August 1, 2012 #### BY ELECTRONIC MAIL OATT Network Integration Transmission Service Customers OATT Long-Term Firm Point-to-Point Transmission Customers OATT Conditional Long-Term Firm Point-to-Point Transmission Customers Re: Updated OATT Transmission Losses Analysis and CBM Usage Analysis **Dear OATT Customers:** Southern Company Services, Inc. ("SCS"), acting as agent for Alabama Power Company, Georgia Power Company, Gulf Power Company, and Mississippi Power Company (collectively, "Southern Companies"), provides this updated transmission losses analysis ("Transmission Losses Analysis") in accordance with the settlement approved by the Federal Energy Regulatory Commission ("FERC" or "Commission") in Docket No. ER02-851 and Southern Companies' Open Access Transmission Tariff ("OATT"), Attachment M, Section 7.1. Specifically, the following materials are enclosed: - 1) <u>ATTACHMENT A</u>: Analysis of Losses - 2) ATTACHMENT B: Cost of Service Load Flow Study - 3) <u>ATTACHMENT C</u>: Supporting Documents - 4) <u>ATTACHMENT</u> <u>D</u>: List of Load Flow Base Cases used to determine inputs to Bulk Transmission Loss Calculations ("Load Flow Base Cases") These materials are being provided electronically and will be posted on the Southern Company OASIS. However, because the Load Flow Base Cases listed in Attachment D contain specific engineering, vulnerability, and detailed design information about existing critical infrastructure, such information constitutes Critical Energy Infrastructure Information ("CEII") subject to Southern Companies' CEII protection measures and, thus, is not being provided as part of this Transmission Losses Analysis. Rather, Southern Companies will provide the load Flow Base Cases listed in Attachment D only to those OATT customers that both request such information and comply with Southern Companies' CEII protection measures, which require the requesting party to consent to a background check and execute a non-disclosure agreement, among other measures. In this regard, OATT customers that would like the Load Flow Base Cases listed in Attachment D should contact Mr. Wes Barber, SCS Transmission Policy & The Honorable Kimberly D. Bose August 1, 2012 Page 2 Services, by phone at (205) 257-6108 or by email at wpbarber@southernco.com in order to begin the necessary processes for obtaining such CEII from Southern Companies. On October 11, 2007, in Docket No. OA07-42, Southern Companies revised OATT Attachment M, Section 7.1 to reflect Southern Companies' commitment to provide an analysis of the instances over the previous two calendar years in which transmission capacity set aside as Capacity Benefit Margin ("CBM") was called upon to meet emergency generation deficits, including OASIS reference numbers and the duration and amount of CBM that was used for such purpose. In accordance with this commitment, Southern Companies confirm that for years 2010 and 2011 there were no instances in which transmission capacity set aside as CBM was used to meet emergency generation deficits. As such further analysis of CBM usage over the previous two years is unnecessary. Any questions regarding the information contained in this letter or the attached materials should be sent in both electronic and paper format to the undersigned attorney. | Sincerely, | | |-----------------------------|------------------| | | | | Drew W. Johnson | _ | | Attorney for Southern Compa | ny Services. Inc | Enclosures (as stated above) cc: D. Biard MacGuineas, Esq. 3604 Jocelyn Street, NW Washington, DC 20015 Robert Weinberg, Esq. Duncan, Weinberg, Genzer & Pembroke 1615 M Street, NW, Suite 800 Washington, DC 20006 David Fitzgerald, Esq. Schiff Hardin LLP 1666 K. Street NW, Suite 360 Washington, DC 20006 The Honorable Kimberly D. Bose August 1, 2012 Page 3 > Randy Elliot, Esq. Miller, Balis, & O'Neil P.C 1015 15th Street, NW Washington, DC 20005 Stephen P. Daniel E. Cary Cook GDS Associates, Inc. 1850 Parkway Place Suite 800 Marietta, Georgia 30067 Mr. Corey Sellers (by email) Mr. Terry Mozena (by email) Mr. Wes Barber (by email) Mr. Don Mooney (by email) Ms. Merry Lou Brasfield (by email) Mr. Tom Penland (by email) Andrew W. Tunnell, Esq. (by email) ### SOUTHERN COMPANY DEMAND AND ENERGY LOSS CALCULATIONS ### Bulk Transmission System Based on PSSE analyses for 2012-2016 period | | <u>Demand Losses</u> | Energy Losses | |--------------------------------|----------------------|---------------| | Cost of Service Load Flows | 2.5% | 2.0% | | Transmission Planning Analysis | 2.4% | 2.2% | ### Sub-Transmission System Based on Estimated 2012 Summer Peak Loads | | <u>Demand Losses</u> | Energy Losses | |-------------------------------------|----------------------|---------------| | Cost of Service Load Flows | 3.7% | 2.9% | | Operating Company Planning Analysis | 2.0% | 1.7% | # Southern Companies Open Access Transmission Tariff Alabama Power Company Cost-of-Service Load Flow 12 MONTHS ENDING DECEMBER 31, 2010 | | | ENERGY | BALANCE | DEMAND | DEMAND BALANCE | | | | |--|--|-------------------------------|--|------------------------|---|--|--|--| | LINE
NO. | DESCRIPTION
(7) | LOSS/BYPASS
FACTORS
(8) | TOTAL
ELECTRIC
SYSTEM
(9) | LOSS/BYPASS
FACTORS | TOTAL
ELECTRIC
SYSTEM | | | | | 1
2
3 | SALES
LOSSES
INTO 5 | 2.00774456% | 35,879,465
720,368
36,599,833 | 2.66193388% | 6,119,836
162,906
6,282,742 | | | | | 4
5
6
7 | OUT OF 4
SALES
LOSSES
INTO 4 | 2.71872281% | 36,599,833
2,900,222
1,073,897
40,573,952 | 3.58327052% | 6,282,742
387,142
239,000
6,908,884 | | | | | 8
9
10
11 | OUT OF 3
SALES
LOSSES
INTO 3 | 0.46698562% | 40,573,952
9,094,816
231,946
49,900,713 | 0.61223306% | 6,908,884
1,163,205
49,420
8,121,509 | | | | | 12
13
14
15 | OUT OF 2
SALES
LOSSES
INTO 2 | 2.18582984% | 49,900,713
12,668,646
1,367,660
63,937,019 | 2.89452683% | 8,121,509
1,580,432
280,825
9,982,767 | | | | | 16 | GENERATION | | 63,937,019 | | 9,982,767 | | | | | 17
18
19
20
21
22 | BREAKDOWN OF LEVEL 2 OUT OF 44 SALES LOSSES INTO 44 FROM GSU FROM BULK | 2.28508171% | 12,161,694
1,346,138
308,665
13,816,497
0
13,816,497 | 2.99265230% | 2,001,600
166,778
64,892
2,233,270
0
2,233,270 | | | | | 23
24
25
26
27
28
29 | OUT OF BULK TO LEVEL 3 SALES LOSSES INTO BULK FROM GENERATION FROM GSU | 1.45050041% | 13,816,497
37,739,020
11,322,508
912,046
63,790,070
0
63,790,070 | 1.90473500% | 2,233,270
6,119,910
1,413,655
186,032
9,952,866
0
9,952,866 | | | | | 30
31
32
33
34 | OUT OF GSU
TO 44
SALES
LOSSES
INTO GSU | 0.23036301% | 63,790,070
0
0
146,949
63,937,019 | 0.30042911% | 9,952,866
0
0
29,901
9,982,767 | | | | | 35
36 | TO GSU
TO BULK | | 63,937,019
0 | | 9,982,767
0 | | | | | 37 | INTO LEVEL 2 | | 63,937,019 | | 9,982,767 | | | | ### Georgia Power Company Cost-of-Service Load Flow 12 MONTHS ENDING SEPTEMBER 31, 2011 | | | ENERGY | BALANCE | DEMAND | DEMAND BALANCE | | | | |--|--|-------------------------------|---|------------------------|--|--|--|--| | LINE
NO. | DESCRIPTION
(7) | LOSS/BYPASS
FACTORS
(8) | TOTAL
ELECTRIC
SYSTEM
(9) | LOSS/BYPASS
FACTORS | TOTAL
ELECTRIC
SYSTEM | | | | | 1
2
3 | SALES
LOSSES
INTO 5 | 1.00639476% | 58,127,191
584,989
58,712,180 | 1.39509424% | 9,982,193
139,261
10,121,454 | | | | | 4
5
6
7 | OUT OF 4
SALES
LOSSES
INTO 4 | 1.60594093% | 58,712,180
8,901,329
1,085,833
68,699,341 | 2.18813548% | 10,121,454
1,230,174
248,389
11,600,017 | | | | | 8
9
10
11 | OUT OF 3
SALES
LOSSES
INTO 3 | 0.38269790% | 68,699,341
17,437,632
329,644
86,466,617 | 0.49155115% | 11,600,017
2,069,412
67,192
13,736,621 | | | | | 12
13
14
15 | OUT OF 2
SALES
LOSSES
INTO 2 | 2.41704748% | 86,466,617
1,069,752
2,115,796
89,652,165 | 3.20852835% | 13,736,621
123,651
444,711
14,304,983 | | | | | 16 | GENERATION | | 89,652,165 | | 14,304,983 | | | | | 17
18
19
20
21
22 | BREAKDOWN OF LEVEL 2 OUT OF 44 SALES LOSSES INTO 44 FROM GSU FROM BULK | 1.66832482% | 6,227,289
615,803
114,165
6,957,257
0
6,957,257 | 2.24083684% | 1,138,924
79,951
27,313
1,246,188
0
1,246,188 | | | | | 23
24
25
26
27
28
29 | OUT OF BULK TO LEVEL 3 SALES LOSSES INTO BULK FROM GENERATION FROM GSU | 2.10816810% | 6,957,257
80,239,328
453,949
1,847,821
89,498,355
19,443,339
70,055,016 | 2.86974847% | 1,246,188
12,597,697
43,700
398,539
14,286,124
5,495,725
8,790,399 | | | | | 30
31
32
33
34 | OUT OF GSU
TO 44
SALES
LOSSES
INTO GSU | 0.21955601% | 70,055,016
0
0
153,810
70,208,826 | 0.21454089% | 8,790,399
0
0
18,859
8,809,258 | | | | | 35
36 | TO GSU
TO BULK | | 70,208,826
19,443,339 | | 8,809,258
5,495,725 | | | | | 37 | INTO LEVEL 2 | | 89,652,165 | | 14,304,983 | | | | ## Gulf Power Company Cost-of-Service Load Flow 12 MONTHS ENDING DECEMBER 31, 2000 | | | ENERGY | BALANCE | DEMAND | DEMAND BALANCE | | | | |--|--|-------------------------------|--|------------------------|--|--|--|--| | LINE
NO. | DESCRIPTION
(7) | LOSS/BYPASS
FACTORS
(8) | TOTAL
ELECTRIC
SYSTEM
(9) | LOSS/BYPASS
FACTORS | TOTAL
ELECTRIC
SYSTEM | | | | | 1
2
3 | SALES
LOSSES
INTO 5 | 1.28415507% | 8,001,448
102,751
8,104,199 | 1.62125942% | 1,413,284
22,913
1,436,197 | | | | | 4
5
6
7 | OUT OF 4
SALES
LOSSES
INTO 4 | 1.28120609% | 8,104,199
563,259
111,048
8,778,506 | 1.61242544% | 1,436,197
72,772
24,331
1,533,300 | | | | | 8
9
10
11 | OUT OF 3
SALES
LOSSES
INTO 3 | 1.92413267% | 8,778,506
1,423,909
196,308
10,398,723 | 2.40792875% | 1,533,300
202,964
41,808
1,778,072 | | | | | 12
13
14
15 | OUT OF 2
SALES
LOSSES
INTO 2 | 2.28759976% | 10,398,723
277,489
244,229
10,920,441 | 2.84836738% | 1,778,072
39,004
51,757
1,868,833 | | | | | 16 | GENERATION | | 10,920,441 | | 1,868,833 | | | | | 17
18
19
20
21
22 | BREAKDOWN OF LEVEL 2 OUT OF 44 SALES LOSSES INTO 44 FROM GSU FROM BULK | 7.03701725% | 318,203
0
22,392
340,595
0
340,595 | 8.79032258% | 52,080
0
4,578
56,658
0
56,658 | | | | | 23
24
25
26
27
28
29 | OUT OF BULK TO LEVEL 3 SALES LOSSES INTO BULK FROM GENERATION FROM GSU | 1.86857089% | 340,595
10,080,520
277,489
199,911
10,898,515
0
10,898,515 | 2.33386801% | 56,658
1,725,992
39,004
42,515
1,864,169
0
1,864,169 | | | | | 30
31
32
33
34 | OUT OF GSU
TO 44
SALES
LOSSES
INTO GSU | 0.20118337% | 10,898,515
0
0
21,926
10,920,441 | 0.25019191% | 1,864,169
0
0
4,664
1,868,833 | | | | | 35
36 | TO GSU
TO BULK | | 10,920,441
0 | | 1,868,833
0 | | | | | 37 | INTO LEVEL 2 | | 10,920,441 | | 1,868,833 | | | | ## Mississippi Power Company Cost-of-Service Load Flow 12 MONTHS ENDING DECEMBER 31, 2010 | | | ENERGY | BALANCE | DEMAND | DEMAND BALANCE | | | | |--|--|-------------------------------|---|------------------------|---|--|--|--| | LINE
NO. | DESCRIPTION
(7) | LOSS/BYPASS
FACTORS
(8) | TOTAL
ELECTRIC
SYSTEM
(9) | LOSS/BYPASS
FACTORS | TOTAL
ELECTRIC
SYSTEM | | | | | 1
2
3 | SALES
LOSSES
INTO 5 | 1.55091055% | 4,980,945
77,250
5,058,195 | 1.92097616% | 862,322
16,565
878,887 | | | | | 4
5
6
7 | OUT OF 4
SALES
LOSSES
INTO 4 | 1.54016095% | 5,058,195
1,247,704
97,121
6,403,020 | 1.90184259% | 878,887
172,567
19,997
1,071,451 | | | | | 8
9
10
11 | OUT OF 3
SALES
LOSSES
INTO 3 | 1.18904841% | 6,403,020
1,434,844
93,196
7,931,060 | 1.46399158% | 1,071,451
172,272
18,208
1,261,931 | | | | | 12
13
14
15 | OUT OF 2
SALES
LOSSES
INTO 2 | 2.14841822% | 7,931,060
4,705,074
271,477
12,907,611 | 2.64500739% | 1,261,931
801,050
54,566
2,117,547 | | | | | 16 | GENERATION | | 12,907,611 | | 2,117,547 | | | | | 17
18
19
20
21
22 | BREAKDOWN OF LEVEL 2
OUT OF 44
SALES
LOSSES
INTO 44
FROM GSU
FROM BULK | 1.95878591% | 274,408
49,670
6,348
330,426
0
330,426 | 2.40987195% | 43,420
8,201
1,244
52,865
0
52,865 | | | | | 23
24
25
26
27
28
29 | OUT OF BULK TO LEVEL 3 SALES LOSSES INTO BULK FROM GENERATION FROM GSU | 1.80991079% | 330,426
7,656,652
4,655,403
228,818
12,871,300
803,874
12,067,426 | 2.22922012% | 52,865
1,218,511
792,849
46,016
2,110,241
130,567
1,979,674 | | | | | 30
31
32
33
34 | OUT OF GSU
TO 44
SALES
LOSSES
INTO GSU | 0.30090402% | 12,067,426
0
0
36,311
12,103,737 | 0.36904477% | 1,979,674
0
0
7,306
1,986,980 | | | | | 35
36 | TO GSU
TO BULK | | 12,103,737
803,874 | | 1,986,980
130,567 | | | | 37 INTO LEVEL 2 12,907,611 2,117,547 ### Southern Electric System Composite Cost-of-Service Load Flow | | | ENERGY BALANCE | | | BALANCE | | |--|--|-------------------------------|--|------------------------|--|---| | LINE
NO. | DESCRIPTION
(7) | LOSS/BYPASS
FACTORS
(8) | TOTAL
ELECTRIC
SYSTEM
(9) | LOSS/BYPASS
FACTORS | TOTAL
ELECTRIC
SYSTEM | | | 1
2
3 | SALES
LOSSES
INTO 5 | 1.38832715% | 106,989,048
1,485,358
108,474,406 | 2.15056635% | 18,377,635
341,645
18,719,280 | | | 4
5
6
7 | OUT OF 4
SALES
LOSSES
INTO 4 | 1.93951899% | 108,474,406
13,612,514
2,367,899
124,454,819 | 2.44884856% | 18,719,280
1,862,655
531,717
21,113,652 | | | 8
9
10
11 | OUT OF 3
SALES
LOSSES
INTO 3 | 0.55321158% | 124,454,819
29,391,200
851,094
154,697,114 | 0.71447105% | 21,113,652
3,607,853
176,628
24,898,133 | | | 12
13
14
15 | OUT OF 2
SALES
LOSSES
INTO 2 | 2.30608143% | 154,697,114
18,720,960
3,999,162
177,417,236 | 3.03130528% | 24,898,133
2,544,137
831,859
28,274,130 | | | 16
17 | OUT OF 1
GENERATION | | 177,417,236
177,417,236 | | 28,274,130
28,274,130 | | | 18
19
20
21
22
23 | BREAKDOWN OF LEVEL 2 OUT OF 44 SALES LOSSES INTO 44 FROM GSU FROM BULK | 2.91185809% | 18,981,594
2,011,612
451,570
21,444,775
0
21,444,775 | 3.74512761% | 3,236,024
254,930
98,027
3,588,981
0
3,588,981 | Ratio of Subtransmission Load to Territorial Load | | 24
25
26
27
28
29
30 | OUT OF BULK TO LEVEL 3 SALES LOSSES INTO BULK FROM GENERATION FROM GSU | 1.96226599% | 21,444,775
135,715,520
16,709,349
3,188,596
177,058,240
20,247,213
156,811,027 | 2.46551352% | 3,588,981
21,662,110
2,289,208
673,102
28,213,400
5,626,292
22,587,108 | Territorial
Load at Bulk
27,540,298 | | 31
32
33 | OUT OF GSU
LOSSES
INTO GSU | 0.32110655% | 156,811,027
358,996
157,170,023 | 0.40164163% | 22,587,108
60,730
22,647,838 | | | 34
35
36 | TO GSU
TO BULK
INTO LEVEL 2 | | 157,170,023
20,247,213
177,417,236 | | 22,647,838
5,626,292
28,274,130 | | #### **SOUTHERN COMPANY** Loss Analysis Spreadsheet for 2012 Tariff Review #### Hydro Available Scenario | | vel-Gross Cases | | | | | | | | | | | |---|--|--|---|--|--|---|--|--|--|----------------|---| | | | | 7 | Γie line loss Adj. | | | | Total Supply | Percent | Avq | Delivery | | (Note 1) | Generation | Load | losses | (Note 2) | Reciepts | Passthrough | GSU Loss | B+F+G-H | Losses | | | | ,, | В | C | D | E | F. | G | Н | 1 | (D+E-H)/I | | | | G12v2As12 DLOSS HYDRO | 43,562.2 | 40.171.4 | 944.1 | 54.4 | -1,337.5 | 0.0 | 78.7 | 42.146.0 | 2.1826% | | 3,840.8 | | G13v2As12_DLOSS_HYDRO | 44,329.4 | 40.951.7 | 941.4 | 49.4 | -1.350.7 | 0.0 | 79.5 | 42,899.2 | 2.1242% | | 3.842.5 | | G14v2As12_DLOSS_HYDRO | 45,298.4 | 41,981.3 | 964.0 | 51.9 | -1,434.4 | 0.0 | 82.0 | 43.782.0 | 2.1329% | | 3,844.3 | | | 45,884.6 | 42,458.0 | 1,029.3 | 47.5 | -1,448.1 | 0.0 | 83.3 | 44,353.2 | 2.2399% | | 3,905.0 | | G15v2As12_DLOSS_HYDRO | | | | | | | | | | | | | G16v2As12_DLOSS_HYDRO | 46,260.5 | 42,955.9 | 1,068.1 | 50.1 | -1,611.7 | 0.0 | 84.9 | 44,563.9 | 2.3187% | 2.1997% | 3,906.2 | | B. Hydro Available at 58.24% load le | evel-Gross Cases | | | | | | | | | | | | | | | 7 | Γie line loss Adj. | | | | Total Supply | Percent | Avg | Delivery | | (Note 1) | Generation | Load | losses | (Note 2) | Reciepts | Passthrough | GSU Loss | B+F+G-H | Losses | · · | ŕ | | • • | В | С | D | ` E ´ | F. | G | Н | 1 | (D+E-H)/I | | | | G12v2As12 ELOSS HYDRO | 29.854.3 | 26.860.9 | 547.8 | 45.5 | -1,337.5 | 0.0 | 53.4 | 28.463.4 | 1.8968% | | 3.840.8 | | G13v2As12 ELOSS HYDRO | 30,376.3 | 27,382.7 | 559.5 | 45.7 | -1,350.7 | 0.0 | 53.7 | 28,971.9 | 1.9033% | | 3.842.5 | | G14v2As12_ELOSS_HYDRO | 30,980.1 | 28.071.1 | 556.2 | 45.8 | -1.434.4 | 0.0 | 56.6 | 29,489.1 | 1.8496% | | 3.844.3 | | | | 28,389.9 | 576.1 | 39.1 | -1,448.1 | 0.0 | 56.7 | 29,860.7 | 1.8703% | | 3,905.0 | | G15v2As12_ELOSS_HYDRO | 31,365.5 | | | | | | | | | 4.00000/ | | | G16v2As12_ELOSS_HYDRO | 31,587.8 | 28,722.8 | 627.4 | 36.4 | -1,611.7 | 0.0 | 56.6 | 29,919.5 | 2.0293% | 1.9099% | 3,906.2 | | Hydro Not available Scenario |) | | | | | | | | | | | | • | | | | | | | | | | | | | C. Hydro Not Available at 87.1% loa | d level-Gross Cases | | 7 | Fie line loss Adi | | | | Total Supply | Percent | Ava | Delivery | | • | | Lood | | Fie line loss Adj. | Pacients | Pacethrough | CSILLogo | Total Supply | Percent | Avg | Delivery | | C. Hydro Not Available at 87.1% loa | Generation | Load | losses | (Note 2) | Reciepts | Passthrough | GSU Loss | Total Supply
B+F+G-H | Losses | Avg | Delivery | | (Note 1) | Generation
B | С | losses
D | (Note 2)
E | F ['] | G | Н | B+F+G-H
I | Losses
(D+E-H)/I | Avg | • | | (Note 1) G12v2As12_DLOSS_NOHYDRO | Generation
B
43,546.6 | C
40,171.4 | losses
D
929.1 | (Note 2)
E
54.7 | F
-1,337.5 | G 0.0 | H
77.3 | B+F+G-H
I
42,131.8 | Losses
(D+E-H)/I
2.1518% | Avg | 3,840.8 | | (Note 1) G12v2As12_DLOSS_NOHYDRO G13v2As12_DLOSS_NOHYDRO | Generation
B
43,546.6
44,335.5 | C
40,171.4
40,951.7 | losses
D
929.1
951.4 | (Note 2)
E
54.7
52.2 | F
-1,337.5
-1,350.7 | G
0.0
0.0 | H
77.3
77.4 | B+F+G-H
I
42,131.8
42,907.4 | Losses
(D+E-H)/I
2.1518%
2.1586% | Avg | 3,840.8
3,842.5 | | (Note 1) G12v2As12_DLOSS_NOHYDRO G13v2As12_DLOSS_NOHYDRO G14v2As12_DLOSS_NOHYDRO | Generation
B
43,546.6
44,335.5
45,307.6 | C
40,171.4
40,951.7
41,981.3 | losses
D
929.1
951.4
973.7 | (Note 2)
E
54.7
52.2
51.9 | F
-1,337.5
-1,350.7
-1,434.4 | G
0.0
0.0
0.0 | H
77.3
77.4
80.4 | B+F+G-H
I
42,131.8
42,907.4
43,792.8 | Losses
(D+E-H)/I
2.1518%
2.1586%
2.1583% | Avg | 3,840.8
3,842.5
3,844.3 | | (Note 1) G12v2As12_DLOSS_NOHYDRO G13v2As12_DLOSS_NOHYDRO | Generation
B
43,546.6
44,335.5 | C
40,171.4
40,951.7
41,981.3
42,458.0 | losses
D 929.1
951.4
973.7
993.6 | (Note 2)
E
54.7
52.2
51.9
47.2 | F
-1,337.5
-1,350.7
-1,434.4
-1,448.1 | G
0.0
0.0
0.0
0.0 | H 77.3
77.4
80.4
82.8 | B+F+G-H
I
42,131.8
42,907.4
43,792.8
44,319.9 | Losses
(D+E-H)/I
2.1518%
2.1586%
2.1583%
2.1617% | · | 3,840.8
3,842.5
3,844.3
3,905.0 | | (Note 1) G12v2As12_DLOSS_NOHYDRO G13v2As12_DLOSS_NOHYDRO G14v2As12_DLOSS_NOHYDRO | Generation
B
43,546.6
44,335.5
45,307.6 | C
40,171.4
40,951.7
41,981.3 | losses
D
929.1
951.4
973.7 | (Note 2)
E
54.7
52.2
51.9 | F
-1,337.5
-1,350.7
-1,434.4 | G
0.0
0.0
0.0 | H
77.3
77.4
80.4 | B+F+G-H
I
42,131.8
42,907.4
43,792.8 | Losses
(D+E-H)/I
2.1518%
2.1586%
2.1583% | Avg
2.1543% | 3,840.8
3,842.5
3,844.3 | | (Note 1) G12v2As12_DLOSS_NOHYDRO G13v2As12_DLOSS_NOHYDRO G14v2As12_DLOSS_NOHYDRO G15v2As12_DLOSS_NOHYDRO G16v2As12_DLOSS_NOHYDRO | Generation
B
43,546.6
44,335.5
45,307.6
45,850.8
46,183.9 | C
40,171.4
40,951.7
41,981.3
42,458.0
42,955.9 | losses
D 929.1
951.4
973.7
993.6 | (Note 2)
E
54.7
52.2
51.9
47.2 | F
-1,337.5
-1,350.7
-1,434.4
-1,448.1 | G
0.0
0.0
0.0
0.0 | H 77.3
77.4
80.4
82.8 | B+F+G-H
I
42,131.8
42,907.4
43,792.8
44,319.9 | Losses
(D+E-H)/I
2.1518%
2.1586%
2.1583%
2.1617% | · | 3,840.8
3,842.5
3,844.3
3,905.0 | | (Note 1) G12v2As12_DLOSS_NOHYDRO G13v2As12_DLOSS_NOHYDRO G14v2As12_DLOSS_NOHYDRO G15v2As12_DLOSS_NOHYDRO | Generation
B
43,546.6
44,335.5
45,307.6
45,850.8
46,183.9 | C
40,171.4
40,951.7
41,981.3
42,458.0
42,955.9 | losses
D 929.1
951.4
973.7
993.6
988.2 | (Note 2)
E 54.7
52.2
51.9
47.2
48.2 | F
-1,337.5
-1,350.7
-1,434.4
-1,448.1 | G
0.0
0.0
0.0
0.0 | H 77.3
77.4
80.4
82.8 | B+F+G-H
I
42,131.8
42,907.4
43,792.8
44,319.9
44,488.4 | Losses
(D+E-H)/I
2.1518%
2.1586%
2.1583%
2.1617%
2.1411% | 2.1543% | 3,840.8
3,842.5
3,844.3
3,905.0
3,906.2 | | (Note 1) G12v2As12_DLOSS_NOHYDRO G13v2As12_DLOSS_NOHYDRO G14v2As12_DLOSS_NOHYDRO G15v2As12_DLOSS_NOHYDRO G16v2As12_DLOSS_NOHYDRO D. Hydro Not Available at 58.24% lo | Generation
B
43,546.6
44,335.5
45,307.6
45,850.8
46,183.9 | C
40,171.4
40,951.7
41,981.3
42,458.0
42,955.9 | losses
D 929.1
951.4
973.7
993.6
988.2 | (Note 2)
E
54.7
52.2
51.9
47.2
48.2 | F
-1,337.5
-1,350.7
-1,434.4
-1,448.1
-1,611.7 | G 0.0
0.0
0.0
0.0
0.0 | H 77.3
77.4
80.4
82.8
83.8 | B+F+G-H
I
42,131.8
42,907.4
43,792.8
44,319.9
44,488.4
Total Supply | Losses
(D+E-H)/I
2.1518%
2.1586%
2.1583%
2.1617%
2.1411% | · | 3,840.8
3,842.5
3,844.3
3,905.0 | | (Note 1) G12v2As12_DLOSS_NOHYDRO G13v2As12_DLOSS_NOHYDRO G14v2As12_DLOSS_NOHYDRO G15v2As12_DLOSS_NOHYDRO G16v2As12_DLOSS_NOHYDRO | Generation
B
43,546.6
44,335.5
45,307.6
45,850.8
46,183.9
and level-Gross Cases
Generation | C
40,171.4
40,951.7
41,981.3
42,458.0
42,955.9
Load | losses
D 929.1
951.4
973.7
993.6
988.2 | (Note 2)
E
54.7
52.2
51.9
47.2
48.2 | F
-1,337.5
-1,350.7
-1,434.4
-1,448.1
-1,611.7 | G 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | H 77.3 77.4 80.4 82.8 83.8 | B+F+G-H
I
42,131.8
42,907.4
43,792.8
44,319.9
44,488.4 | Losses
(D+E-H)/I
2.1518%
2.1586%
2.1583%
2.1617%
2.1411%
Percent
Losses | 2.1543% | 3,840.8
3,842.5
3,844.3
3,905.0
3,906.2 | | (Note 1) G12v2As12_DLOSS_NOHYDRO G13v2As12_DLOSS_NOHYDRO G14v2As12_DLOSS_NOHYDRO G15v2As12_DLOSS_NOHYDRO G16v2As12_DLOSS_NOHYDRO D. Hydro Not Available at 58.24% lo | Generation B 43,546.6 44,335.5 45,307.6 45,850.8 46,183.9 and level-Gross Cases Generation B | C
40,171.4
40,951.7
41,981.3
42,458.0
42,955.9
Load
C | losses
D 929.1
951.4
973.7
993.6
988.2 | (Note 2)
E
54.7
52.2
51.9
47.2
48.2
Fie line loss Adj.
(Note 2)
E | F
-1,337.5
-1,350.7
-1,434.4
-1,448.1
-1,611.7
Reciepts
F | G 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Passthrough G | H 77.3 77.4 80.4 82.8 83.8 GSU Loss H | B+F+G-H
I
42,131.8
42,907.4
43,792.8
44,319.9
44,488.4
Total Supply
B+F+G-H
I | Losses
(D+E-H)/I
2.1518%
2.1586%
2.1583%
2.1617%
2.1411%
Percent
Losses
(D+E-H)/I | 2.1543% | 3,840.8
3,842.5
3,844.3
3,905.0
3,906.2 | | (Note 1) G12v2As12_DLOSS_NOHYDRO G13v2As12_DLOSS_NOHYDRO G14v2As12_DLOSS_NOHYDRO G15v2As12_DLOSS_NOHYDRO G16v2As12_DLOSS_NOHYDRO D. Hydro Not Available at 58.24% lo (Note 1) G12v2As12_ELOSS_NOHYDRO | Generation B | C
40,171.4
40,951.7
41,981.3
42,458.0
42,955.9
Load
C
26,860.9 | losses
D 929.1
951.4
973.7
993.6
988.2 | (Note 2) E 54.7 52.2 51.9 47.2 48.2 Tie line loss Adj. (Note 2) E 53.0 | F
-1,337.5
-1,350.7
-1,434.4
-1,448.1
-1,611.7
Reciepts
F
-1,337.5 | G 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Passthrough G 0.0 | H 77.3 77.4 80.4 82.8 83.8 GSU Loss H 51.9 | B+F+G-H
I
42,131.8
42,907.4
43,792.8
44,319.9
44,488.4
Total Supply
B+F+G-H
I
28,487.0 | Losses
(D+E-H)/I
2.1518%
2.1586%
2.1583%
2.1617%
2.1411%
Percent
Losses
(D+E-H)/I
2.0133% | 2.1543% | 3,840.8
3,842.5
3,844.3
3,905.0
3,906.2
Delivery | | (Note 1) G12v2As12_DLOSS_NOHYDRO G13v2As12_DLOSS_NOHYDRO G14v2As12_DLOSS_NOHYDRO G15v2As12_DLOSS_NOHYDRO G16v2As12_DLOSS_NOHYDRO D. Hydro Not Available at 58.24% lo (Note 1) G12v2As12_ELOSS_NOHYDRO G13v2As12_ELOSS_NOHYDRO | Generation B 43,546.6 44,335.5 45,307.6 45,850.8 46,183.9 and level-Gross Cases Generation B 29,876.4 30,397.3 | C
40,171.4
40,951.7
41,981.3
42,458.0
42,955.9
Load
C
26,860.9
27,382.7 | losses
D 929.1
951.4
973.7
993.6
988.2
losses
D 572.4
580.6 | (Note 2) E 54.7 52.2 51.9 47.2 48.2 File line loss Adj. (Note 2) E 53.0 51.2 | F
-1,337.5
-1,350.7
-1,434.4
-1,448.1
-1,611.7
Reciepts
F
-1,337.5
-1,350.7 | G 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | H 77.3
77.4
80.4
82.8
83.8
GSU Loss
H 51.9
52.6 | B+F+G-H
I
42,131.8
42,907.4
43,792.8
44,319.9
44,488.4
Total Supply
B+F+G-H
I
28,487.0
28,994.0 | Losses
(D+E-H)/I
2.1518%
2.1588%
2.1583%
2.1617%
2.1411%
Percent
Losses
(D+E-H)/I
2.0133%
1.9977% | 2.1543% | 3,840.8
3,842.5
3,844.3
3,905.0
3,906.2
Delivery
3,840.8
3,842.5 | | (Note 1) G12v2As12_DLOSS_NOHYDRO G13v2As12_DLOSS_NOHYDRO G14v2As12_DLOSS_NOHYDRO G15v2As12_DLOSS_NOHYDRO G16v2As12_DLOSS_NOHYDRO D. Hydro Not Available at 58.24% lo (Note 1) G12v2As12_ELOSS_NOHYDRO G13v2As12_ELOSS_NOHYDRO G14v2As12_ELOSS_NOHYDRO G14v2As12_ELOSS_NOHYDRO | Generation B | C
40,171.4
40,951.7
41,981.3
42,458.0
42,955.9
Load
C
26,860.9
27,382.7
28,071.1 | Osses D 929.1 951.4 973.7 993.6 988.2 Osses D 572.4 580.6 601.4 | (Note 2) E 54.7 52.2 51.9 47.2 48.2 File line loss Adj. (Note 2) E 53.0 51.2 55.9 | F
-1,337.5
-1,350.7
-1,434.4
-1,448.1
-1,611.7
Reciepts
F
-1,337.5
-1,337.5
-1,434.4 | G 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | H 77.3
77.4
80.4
82.8
83.8
GSU Loss
H 51.9
52.6
54.5 | B+F+G-H
I
42,131.8
42,907.4
43,792.8
44,319.9
44,488.4
Total Supply
B+F+G-H
I
28,487.0
28,994.0
29,534.2 | Losses
(D+E-H)/I
2.1518%
2.1586%
2.1583%
2.1617%
2.1411%
Percent
Losses
(D+E-H)/I
2.0133%
1.9977%
2.0413% | 2.1543% | 3,840.8
3,842.5
3,844.3
3,905.0
3,906.2
Delivery
3,840.8
3,842.5
3,844.3 | | (Note 1) G12v2As12_DLOSS_NOHYDRO G13v2As12_DLOSS_NOHYDRO G14v2As12_DLOSS_NOHYDRO G15v2As12_DLOSS_NOHYDRO G16v2As12_DLOSS_NOHYDRO D. Hydro Not Available at 58.24% lo (Note 1) G12v2As12_ELOSS_NOHYDRO G13v2As12_ELOSS_NOHYDRO G14v2As12_ELOSS_NOHYDRO G15v2As12_ELOSS_NOHYDRO G15v2As12_ELOSS_NOHYDRO G15v2As12_ELOSS_NOHYDRO | Generation B | C
40,171.4
40,951.7
41,981.3
42,458.0
42,955.9
Load
C
26,860.9
27,382.7
28,071.1
28,389.9 | losses
D 929.1
951.4
973.7
993.6
988.2
losses
D 572.4
580.6
601.4
579.7 | (Note 2) E 54.7 52.2 51.9 47.2 48.2 Fie line loss Adj. (Note 2) E 53.0 51.2 55.9 42.5 | F -1,337.5 -1,350.7 -1,434.4 -1,448.1 -1,611.7 Reciepts F -1,337.5 -1,350.7 -1,434.4 -1,448.1 | G 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | H 77.3
77.4
80.4
82.8
83.8
GSU Loss
H 51.9
52.6
54.5 | B+F+G-H
I
42,131.8
42,907.4
43,792.8
44,319.9
44,488.4
Total Supply
B+F+G-H
I
28,487.0
28,994.0
29,534.2
29,865.4 | Losses
(D+E-H)/I
2.1518%
2.1586%
2.1583%
2.1617%
2.1411%
Percent
Losses
(D+E-H)/I
2.0133%
1.9977%
2.0413%
1.9008% | 2.1543%
Avg | 3,840.8
3,842.5
3,844.3
3,905.0
3,906.2
Delivery
3,840.8
3,842.5
3,844.3
3,905.0 | | (Note 1) G12v2As12_DLOSS_NOHYDRO G13v2As12_DLOSS_NOHYDRO G14v2As12_DLOSS_NOHYDRO G15v2As12_DLOSS_NOHYDRO G16v2As12_DLOSS_NOHYDRO D. Hydro Not Available at 58.24% lo (Note 1) G12v2As12_ELOSS_NOHYDRO G13v2As12_ELOSS_NOHYDRO G14v2As12_ELOSS_NOHYDRO G14v2As12_ELOSS_NOHYDRO | Generation B | C
40,171.4
40,951.7
41,981.3
42,458.0
42,955.9
Load
C
26,860.9
27,382.7
28,071.1 | Osses D 929.1 951.4 973.7 993.6 988.2 Osses D 572.4 580.6 601.4 | (Note 2) E 54.7 52.2 51.9 47.2 48.2 File line loss Adj. (Note 2) E 53.0 51.2 55.9 | F
-1,337.5
-1,350.7
-1,434.4
-1,448.1
-1,611.7
Reciepts
F
-1,337.5
-1,337.5
-1,434.4 | G 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | H 77.3
77.4
80.4
82.8
83.8
GSU Loss
H 51.9
52.6
54.5 | B+F+G-H
I 42,131.8
42,907.4
43,792.8
44,319.9
44,488.4
Total Supply
B+F+G-H
I 28,487.0
28,994.0
29,534.2 | Losses
(D+E-H)/I
2.1518%
2.1586%
2.1583%
2.1617%
2.1411%
Percent
Losses
(D+E-H)/I
2.0133%
1.9977%
2.0413% | 2.1543% | 3,840.8
3,842.5
3,844.3
3,905.0
3,906.2
Delivery
3,840.8
3,842.5
3,844.3 | Notes: 1. "d" in title indicates cases with hydro generation dispatched. | | | Losses for Energy load level (i.e., 58.24 % of Peak Load | | |---|----------------------------|--|-----------| | Loss percent with Hydro on | Loss percent without hydro | Loss percent Loss perce with Hydro on without hyd | | | 2012 2.18269 | 2.1518% | 1.8968% 2.0133 | 3% | | 2013 2.12429 | 2.1586% | 1.9033% 1.9977 | 7% | | 2014 2.13299 | | 1.8496% 2.0413 | | | 2015 2.23999 | 2.1617% | 1.8703% 1.9008 | | | 2016 2.31879 | | 2.0293% 1.9195 | | | 2.1997% | 2.1543% | 1.9099% 1.9745 | 5% | | Losses determined from average of simulations with and without hydro | 2.1770% | 1.9422 | % | | Losses that cannot be modeled in line flow simulations (based on ITS Study) | 0.1807% | 0.2864 | <u>%</u> | | Losses on Southern Companies Bulk Transmission System | 2.3576% | 2.2286 | i% | [&]quot;d_NoHydro" in title indicates case without hydro generation dispatched. ^{2.} Losses determined in PSSE simulations include losses on tie lines between Southern Company and adjacent Control Areas based on "metered end" of line in the PSS/E model.. 2. Losses determined in PSSE simulations include losses on the lines between Southern Company and adjacent Control Areas based on Interied end of line in the PSS/E into Therefore, Area losses are adjusted based on percentage of line ownership. **adjustment for Southern Control Area owned tie line losses metered at Area 1 bus, "-" adjustment for Adjacent Area owned tie line losses metered at Adjacent Area bus. 3. Losses are (losses from PSSE simulation + Auto no-load losses - 46kV losses) #### Sources of Bulk Transmission System Losses Other Than Those Calculated in Transmission Planning Load Flows | | | | Demand
Losses
(Average
2012 - 2016) | | | | Energy
Losses
(Average
2012 - 2016) | |---|----------------------------------|---|---|---|----------------------------------|---|---| | Bulk Transmission Losses (incl transformers) | (Note 1) | В | 2.1770% | Bulk Transmission Losses (incl transformers) | (Note 1) | В | 1.9422% | | Capacitors & Reactors (STUDY) Catenary - Equiv. In Load Flow (B * 2%) Contact Resistances (Assumed = 0)* Corona (STUDY) Dev. From Base Case Schedules (Assumed = 0)* Dev. In inadv. Inter. (STUDY) | (Note 2)
(Note 2)
(Note 2) | | 0.0052%
0.0435%
0.0000%
0.0175%
0.0000%
0.0277% | Capacitors & Reactors (STUDY) Catenary - Equiv. In Load Flow (B * 2%) Contact Resistances (Assumed = 0)* Corona (STUDY) Dev. From Base Case Schedules (Assumed = 0)* Dev. In inadv. Inter (STUDY) | (Note 2)
(Note 2)
(Note 2) | | 0.0014%
0.0388%
0.0000%
0.0817%
0.0000%
0.0500% | | E/M Fields (B*0.3%) Harmonics (B*.0625%) Insulator Leakage (STUDY) Line out operation (STUDY) OHGW Losses (B*1.4%) Power Factor (Assumed = 0)* Temp. Compensation of Resistance (Assumed = 0)* Unbalanced System Operation (B * 1%) | (Note 2)
(Note 2) | | 0.0065%
0.0014%
0.0179%
0.0063%
0.0305%
0.0000%
0.0000% | E/M Fields (STUDY) Harmonics (B*.0625%) Insulator Leakage (STUDY) Line out operation (STUDY) OHGW Losses (B*1.4%) Power Factor (Assumed = 0)* Temp. Compensation of Resistance (Assumed = 0)* Unbalanced System Operation (B * 1.75%) | (Note 2)
(Note 2) | | 0.0144%
0.0012%
0.0323%
0.0011%
0.0272%
0.0000%
0.0000% | | Unmetered Auxiliary Equip. (STUDY) | (Note 2) | | 0.0024% | Unmetered Auxiliary Equip. (STUDY) | (Note 2) | | 0.0043% | | Total System Demand Loss | es | | 2.3576% | Total System Energy L | .osses | | 2.2286% | | Bulk Transmission Losses from Load Flow Simulation | | | 2.1770% | Bulk Transmission Losses from Load Flow Simulation | | | 1.9422% | | Demand Losses other than from Load Flow | | | 0.1807% | Energy Losses other than from Load Flow | | | 0.2864% | ^{*} ITS Loss study identified this loss component. It was assumed = 0 for this Tariff Loss Study. Note 1 - Bulk system losses were determined from 2012 series base cases, for average 12 CP and energy simulations. Note 2 - Where updated information is not available, information taken directly from 2011 ITS Loss Study is used as representative of current conditions. #### **OPERATING COMPANY PLANNING ANALYSIS for SUBTRANSMISSION SYSTEM** 2012 Demand Case (simulations & calculations performed at 85.8% of peak load) | | Supply to
Subtransmission | Line Losses | Transformer
<u>Losses</u> | Total Losses | Losses as % of Supply | |---|--|-------------|------------------------------|--------------|-----------------------| | Alabama Power Company | 2,072.13 | 35.53 | 10.31 | 45.84 | 2.21% | | Georgia Power Company | 1,622.10 | 19.70 | 5.07 | 24.77 | 1.53% | | Mississippi Power Company (Note 1) | 61.20 | | | 2.10 | 3.43% | | Gulf Power Company | 47.55 | 0.44 | 0.31 | 0.75 | 1.57% | | Losses determined through line flow simulations | 3,802.98 | | | 73.46 | 1.93% | | | ITS Defined Losses that cannot be modeled in line flow simulations | | | | 0.09% | | | Demand losses on the Subtransmission System | | | | | #### 2012 Energy Case (simulations & calculations performed at 58.2% of peak load) | | Supply to
Subtransmission | Line Losses | Transformer
<u>Losses</u> | Total Losses | Losses as %
of Supply | |---|--|-------------|------------------------------|--------------|--------------------------| | Alabama Power Company | 1,398.96 | 18.54 | 7.14 | 25.67 | 1.84% | | Georgia Power Company | 1,100.30 | 9.40 | 5.07 | 14.47 | 1.32% | | Mississippi Power Company (Note 1) | 41.40 | | | 0.92 | 2.22% | | Gulf Power Company | 32.17 | 0.20 | 0.23 | 0.43 | 1.33% | | Losses determined through line flow simulations | 2,572.83 | | | 41.49 | 1.61% | | | ITS Defined Losses that cannot be modeled in line flow simulations | | | | | | | Energy losses on the Subtransmission System | | | | | Note 1 - Subtransmission loss data was only supplied in total for Mississippi Power Company #### Sources of 44/46 kV Transmission System Losses Other Than Those Calculated in Operating Company Planning Load Flows | | | | SubTransmission
Demand Losses | | | | SubTransmission
Energy Losses | |---|----------|---|----------------------------------|--|----------|---|----------------------------------| | SubTransmission Losses | (Note 1) | s | 1.93% | SubTransmission Losses | (Note 1) | s | 1.61% | | Capacitors & Reactors (8,210MVAR*.02%)=1.6 MW
Catenary - Equiv. In Load Flow (S * 2%)
Corona (5.4 MWs)
Dev. In inadv. Inter (5.019 MWs)
E/M Fields (S*0.3%) | | | 0.0386% | Capacitors & Reactors (3,240 *.02%+272*0.15%)=1.1 MW
Catenary - Equiv. In Load Flow (S * 2%)
Corona (14.44 MW)
Dev. In inadv. Inter (6.77 MW)
E/M Fields | | | 0.0322% | | Harmonics (\$*.0625%) Insulator Leakage (w/fixed Resist./Disk)=6.55 MW Line out operation | | | 0.0012% | Harmonics (S*.0625%) Insulator Leakage (w/fixed Resist./ Disk)=6.55 MW Line out operation | | | 0.0010% | | OHGW Losses (S*1.4%)
Unbalanced System Operation (S * 1%)
Unmetered Auxiliary Equip. (0.57MW) | | | 0.0270%
0.0193% | OHGW Losses (S*1.4%) Unbalanced System Operation S * 1.75)% Unmetered Auxiliary Equip. (0.76 MW) | | | 0.0225%
0.0282% | | Total System Demand Losses | | | 2.0161% | Total System Energy Losses | | | 1.6939% | | SubTransmission Losses simulated by Companies | | | 1.93% | SubTransmission Losses simulated by Companies | | | 1.61% | | Demand Losses other than those simulated | | | 0.0861% | Demand Losses other than those simulated | | | 0.0839% | Note 1 - SubTransmission losses were determined by analysis performed by the Southern Companies using study tools available. ### Contents of CD Provided with Updated Losses Analysis #### 1. Load flow simulations provided in "LossEvaluationCases2012.zip" - a) Cases with load representing 87.1% of peak load with hydro generation available: - i) G12v2As12_DLOSS_HYDRO.sav - ii) G13v2As12 DLOSS HYDRO.sav - iii) G14v2As12_DLOSS_HYDRO.sav - iv) G15v2As12_DLOSS_HYDRO.sav - v) G16v2As12_DLOSS_HYDRO.sav - b) Cases with load representing 87.1% of peak load without hydro generation available: - i) G12v2As12 DLOSS NOHYDRO.sav - ii) G13v2As12_DLOSS_NOHYDRO.sav - iii) G14v2As12_DLOSS_NOHYDRO.sav - iv) G15v2As12_DLOSS_NOHYDRO.sav - v) G16v2As12_DLOSS_NOHYDRO.sav - c) Cases with load representing 58.24% of peak load with hydro generation available: - i) G12v2As12_ELOSS_HYDRO.sav - ii) G13v2As12_ELOSS_HYDRO.sav - iii) G14v2As12 ELOSS HYDRO.sav - iv) G15v2As12 ELOSS HYDRO.sav - v) G16v2As12_ELOSS_HYDRO.sav - d) Cases with load representing 58.24% of peak load without hydro generation available: - i) G12v2As12_ELOSS_NOHYDRO.sav - ii) G13v2As12_ELOSS_NOHYDRO.sav - iii) G14v2As12 ELOSS NOHYDRO.sav - iv) G15v2As12_ELOSS_NOHYDRO.sav - v) G16v2As12_ELOSS_NOHYDRO.sav #### 2. Spreadsheets with GSU loss evaluation in "GSU_losses.zip:" - e) Spreadsheet with GSU losses for cases with load representing 87.1% of peak load with hydro generation available: - i) G12v2As12_DLOSS_HYDRO_GSUlosses.csv - ii) G13v2As12 DLOSS HYDRO GSUlosses.csv - iii) G14v2As12_DLOSS_HYDRO _GSUlosses.csv - iv) G15v2As12_DLOSS_HYDRO_GSUlosses.csv - v) G16v2As12_DLOSS_HYDRO_GSUlosses.csv - f) Spreadsheet for GSU loss for cases with load representing 87.1% of peak load without hydro generation available: - i) G12v2As12 DLOSS NOHYDRO GSUlosses.csv - ii) G13v2As12_DLOSS_NOHYDRO_GSUlosses.csv - iii) G14v2As12_DLOSS_NOHYDRO_GSUlosses.csv - iv) G15v2As12_DLOSS_NOHYDRO_GSUlosses.csv - v) G16v2As12_DLOSS_NOHYDRO_GSUlosses.csv - g) Spreadsheet for GSU loss for cases with load representing 58.24% of peak load with hydro generation available: - i) G12v2As12_ELOSS_HYDRO_GSUlosses.csv - ii) G13v2As12_ELOSS_HYDRO_GSUlosses.csv - iii) G14v2As12_ELOSS_HYDRO_GSUlosses.csv - iv) G15v2As12_ELOSS_HYDRO_GSUlosses.csv - v) G16v2As12 ELOSS HYDRO GSUlosses.csv - h) Spreadsheet for GSU loss for cases with load representing 58.24% of peak load without hydro generation available: - i) G12v2As12_ELOSS_NOHYDRO_GSUlosses.csv - ii) G13v2As12 ELOSS NOHYDRO GSUlosses.csv - iii) G14v2As12 ELOSS NOHYDRO GSUlosses.csv - iv) G15v2As12_ELOSS_NOHYDRO_GSUlosses.csv - v) G16v2As12_ELOSS_NOHYDRO_GSUlosses.csv #### 3. Spreadsheets with Tie Line loss evaluation in "Tie_line_losses.zip:" - a) Spreadsheet with Tie Line losses for cases with load representing 87.1% of peak load with hydro generation available: - i) G12v2As12_DLOSS_HYDRO_TIElosses.csv - ii) G13v2As12 DLOSS HYDRO TIElosses.csv - iii) G14v2As12_DLOSS_HYDRO_TIElosses.csv - iv) G15v2As12_DLOSS_HYDRO_TIElosses.csv - v) G16v2As12 DLOSS HYDRO TIElosses.csv - b) Spreadsheet for Tie Line loss for cases with load representing 87.1% of peak load without hydro generation available: - i) G12v2As12_DLOSS_NOHYDRO_TIElosses.csv - ii) G13v2As12_DLOSS_NOHYDRO_TIElosses.csv - iii) G14v2As12_DLOSS_NOHYDRO_TIElosses.csv - iv) G15v2As12 DLOSS NOHYDRO TIElosses.csv - v) G16v2As12_DLOSS_NOHYDRO_TIElosses.csv - c) Spreadsheet with Tie Line losses for cases with load representing 58.24% of peak load with hydro generation available: - i) G12v2As12_ELOSS_HYDRO_TIElosses.csv #### Attachment D Updated OATT Losses Analysis - ii) G13v2As12_ELOSS_HYDRO_TIElosses.csv - iii) G14v2As12_ELOSS_HYDRO_TIElosses.csv - iv) G15v2As12_ELOSS_HYDRO_TIElosses.csv - v) G16v2As12_ELOSS_HYDRO_TIElosses.csv - d) Spreadsheet for Tie Line loss for cases with load representing 58.24% of peak load without hydro generation available: - i) G12v2As12_ELOSS_NOHYDRO_TIElosses.csv - ii) G13v2As12_ELOSS_NOHYDRO_TIElosses.csv - iii) G14v2As12_ELOSS_NOHYDRO_TIElosses.csv - iv) G15v2As12_ELOSS_NOHYDRO_TIElosses.csv - v) G16v2As12_ELOSS_NOHYDRO_TIElosses.csv #### 4. Spreadsheets with 46KV loss evaluation in "46kV_losses.zip:" - a) Spreadsheet with 46kV losses for cases with load representing 87.1% of peak load with hydro generation available: - i) G12v2As12_DLOSS_HYDRO_46kVlosses.csv - ii) G13v2As12_DLOSS_HYDRO_46kVlosses.csv - iii) G14v2As12_DLOSS_HYDRO _46kVlosses.csv - iv) G15v2As12_DLOSS_HYDRO_46kVlosses.csv - v) G16v2As12 DLOSS HYDRO 46kVlosses.csv - b) Spreadsheet for 46kV losses for cases with load representing 87.1% of peak load without hydro generation available: - i) G12v2As12_DLOSS_NOHYDRO_46kV losses.csv - ii) G13v2As12 DLOSS NOHYDRO 46kV losses.csv - iii) G14v2As12 DLOSS NOHYDRO 46kV losses.csv - iv) G15v2As12_DLOSS_NOHYDRO_46kV losses.csv - v) G16v2As12 DLOSS NOHYDRO 46kV losses.csv - c) Spreadsheet for 46kV losses for cases with load representing 58.24% of peak load with hydro generation available: - i) G12v2As12_ELOSS_HYDRO_46kV losses.csv - ii) G13v2As12_ELOSS_HYDRO_46kV losses.csv - iii) G14v2As12_ELOSS_HYDRO_46kV losses.csv - iv) G15v2As12_ELOSS_HYDRO_46kV losses.csv - v) G16v2As12_ELOSS_HYDRO_46kV losses.csv - d) Spreadsheet for 46kV losses for cases with load representing 58.24% of peak load without hydro generation available: - i) G12v2As12_ELOSS_NOHYDRO_46kV losses.csv - ii) G13v2As12_ELOSS_NOHYDRO_46kV losses.csv - iii) G14v2As12_ELOSS_NOHYDRO_46kV losses.csv - iv) G15v2As12_ELOSS_NOHYDRO_46kV losses.csv - v) G16v2As12_ELOSS_NOHYDRO_46kV losses.csv ### Attachment D Updated OATT Losses Analysis - 5. Spreadsheet used for estimating the Autotransformer no-load losses. - i) Auto_no_load_losses_2012.xls